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J. Phys. A: Math. Gen. 13 (1980) 1673-1684. Printed in Great Britain 

The principle of the indistinguishability of identical 
particles and the Lie algebraic approach to the field 
quantisation 

A B Govorkov 
Joint Institute for Nuclear Research, Dubna, USSR 

Received 30 March 1979, in final form 1 November 1979 

Abstract. The density matrix, rather than the wavefunction describing the system of a fixed 
number of non-relativistic identical particles, is subject to the second quantisation. Here 
the bilinear operators which move a particle from a given state to another appear and satisfy 
the Lie algebraic relations of the unitary group SU(p) when the dimension p + w .  The 
drawing into consideration of the system with a variable number of particles implies the 
extension of this algebra into one of the simple Lie algebras of classical (orthogonal, 
symplectic or unitary) groups in the even-dimensional spaces. These Lie algebras cor- 
respond to the para-Fermi-, para-Bose- and para-uniquantisation of fields, respectively. 

1. Introduction 

Nowadays it is widely accepted that all known elementary and composite particles of 
nature and even hypothetical ones (quarks, gluons when colour degrees of freedom are 
taken into account) are necessarily either fermions or bosons described by antisym- 
metric and symmetric wavefunctions, respectively. However, right from the start of 
quantum mechanics its founders drew attention to the possible existence of some kind 
of ‘intermediate statistics’ of identical particles (for example, see Dirac 1958, Pauli 
1958). These statistics could be described by the functions belonging to the multi- 
dimensional irreducible representations of the group of permutations of particle 
indices. Herein the state of a system of identical, particles corresponds to a ‘generalised 
ray’ in the Hilbert space of many-particle states: the set of normalised vectors in such 
irreducible subspaces (Messiah and Greenberg 1964). The physics literature contains a 
number of attempts to disprove this possibility (Galindo et a1 1962, Pandres 1962, 
Steinmann 1966) but all of them turn out to be unsound because the arguments when 
formulated correctly (Dresden 1963, Messiah and Greenberg 1964, Hartle and Taylor 
1969, Stolt and Taylor 1970, 1971) always imply an additional assumption. Many 
authors (among them Salzmann (1970) and Kaplan (1974)) proposed manifestly more 
restrictive formulations of the law oE the indistinguishability of identical particles, which 
were equivalent to ‘the symmetrisation postulate’ (Messiah and Greenberg 1964): the 
existence of the Fermi-Dirac and Bose-Einstein statistics only. 

From the foregoing discussion weconclude that there are no reasons for rejecting 
intermediate statistics, or ‘parastatistics’ as they were named later, from the outset. 
Thus we ought to investigate the question: what kind of matter are they? 
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It is well known that the most convenient way to describe systems of identical 
particles is the method of second quantisation, as the particle creation and annihilation 
operators contain full information about the permutation properties of the cor- 
responding wavefunctions. Thus one should use this method for wavefunctions with 
mixing symmetry. For the first time an attempt of this kind was undertaken by 
Okayama (1952), but later Kamefuchi and Takahashi (1962) showed that there was a 
mistake in his consideration. The analogous attempt was not repeated. 

Here we apply another method. Rather than the wavefunction the density matrix is 
subject to the second quantisation because the latter is ‘an observable’ and must be a 
symmetrical function of particle indices due to the indistinguishability of identical 
particles. In the framework of this approach bilinear operators which move a particle 
from a given state to another appear and come into the Schrodinger equation for the 
density matrix. The main result is that they obey the Lie algebra of the unitary group 
SU(p) when the dimension p ,  equal to the number of independent single-particle states, 
goes to infinity. Thus any generalisation of the usual field quantisation must include the 
algebra of those operators. 

At first we consider the non-relativistic theory, but the relativistic generalisation can 
be easily accomplished after the transition from the algebra of bilinear operators to the 
generalised algebra of particle creation and annihilation operators is performed. 

The paper is organised as follows. In 0 2 the second quantisation of the density 
matrix is carried out and the Schrodinger equation is written down in terms of bilinear 
operators; in the same section the algebra of these operators is considered. 

In 0 3 the transition to systems with a variable number of particles is performed and 
the particle creation and annihilation operators are introduced in themselves. Also the 
algebra of bilinear operators is expanded into the Lie algebra of one of the classical 
(orthogonal, symplectic, unitary) groups. In 0 4 the connection between this generalis- 
ation of field quantisation and fermion and boson fields with inner degrees of freedom is 
briefly discussed. 

2. The second quantisation of the denisty matrix 

The system of n identical particles is described unambiguously by the density matrix 

P ( x ~ ,  . . ., xn; xi, * * * xk; t )  (1) 

which is a complex function of time, t, and two sets of the particle arguments: ‘primary’ 
xl, . . . , x,  and ‘secondary’ x i , .  . . , xk within the 3n-dimensional configuration space. 
(If arguments include, in addition to the space coordinates, the spin variables, then the 
dimension of the configuration space enlarges.) Beforehand we do not assume any 
symmetry properties of this density matrix with respect to permutations of primary 
arguments or permutations of secondary arguments performed separately. However, 
owing to the indistinguishability of identical particles, the density matrix ( l ) ,  being an 
observable, must be symmetrical with respect to the same permutation performed 
among its primary and secondary arguments simultaneously. Thus 

P ( X P I , .  . * 9 XPn; xf.1, 9 xbn; t ) = p ( x ~ ,  * 7 x n ;  xi ,  * xk; t )  (2) 

for any permutation P E  S,, where P1, P2, Pn means the replacement of particle indices 
1 , 2 , .  . . , n by some other indices i,, i2,. . . , in from the same set of numbers. We 
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consider this rule (2) as the most general formulation of the principle of indis- 
tinguishability of identical particles. Our task now is to derive the consequences of this 
law. 

In order to approach second quantisation, it is necessary to introduce the space of 
the occupation numbers. Let there be a complete set of functions d ( r ) ( x )  which are 
eigenvectors of the complete set of single-particle observables with the (discrete) 
eigenvalues denoted by ( r ) .  We decompose the density matrix into the series 

p ( x 1 , .  * . , x,; xi,. . . , x;; t )  

= 1 c ( r l , .  . . , r,,; r ; ,  . . . , r ; ;  t )  
r l  ,..., r m  
r 1 ,. . ., rA 

where the sum is taken over all sets of primary and secondary eigenvalues of n-particle 
states; the bar denotes complex conjugation. 

The density matrix satisfies the following well-known properties (see, for example, 
Landau and Lifshitz 1958, Fano 1957). It is an Hermitian, positive definite, normalised 
to unity, 

1 c(rl, . . . r,,; rl ,  . . . , r , ;  t )  = I ,  
r 1 3 . . . , r n  

(4) 

matrix, which obeys the Schrodinger equation 

ih ac( t ) /a t  = Hc(t)-  c(t)H. ( 5 )  

Here H(rl ,  . . . , r,;  r ; ,  . . . , r ; )  is the Hamiltonian of the system of identical particles in 
the r representation which must be symmetrical in its arguments. 

Due to the absence of symmetry properties of the density matrix with respect to its 
primary or secondary arguments separately we cannot introduce any occupation 
numbers for primary-particle states and for secondary ones. However, we can do this 
for primary and secondary-particle states together. We define the number of particles 
nij, which is the number of identical particles occupying a given state r(i) among all 
primary states r l ,  . . . , r,, and a given state r ( j )  among all secondary states r ; ,  . . . , rk. In 
one word, nij is the number of identical particles in 'a double state' ( r ( j ) ,  r")). Thus we 
shall speak about 'the double occupation number space'. Due to the symmetry of the 
density matrix in particle indices 1 ,  2, . . . , n the matrices with the same double 
occupation numbers are equal to each other, and they can be put equal to a single 
density matrix in this space: 

c ( r l ,  . . . , r,,; r ; ,  . . . , r ; ;  t )  = R(n l l ,  n12, . . . , nz l ,  nZ2, . . . ; t )  (6 )  

f nij = n. 
i ,j= 1 

In a shorthand form we shall denote the set of numbers (rill, n12, etc) by the symbol (n i j )  
and write R(ni j )  instead of the RHS of equation (6). 

The single diagonal matrix 

R ( n i i ; t ) = R ( n , i = 1 ,  . . . , C Y ) ;  n i j = O f o r i f j ; t )  

in the double occupation number space corresponds to the set of diagonal matrices 
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c ( r , ,  . . . , r , ;  r ; ,  . . . , r b ;  t )  with the same double occupation states. The number of 
these matrices is equal to 

n! (  r = l  .fi n i i ! ) - ' .  

Thus the normalised density matrix in the double occupation number space is 

It is just the normalised density matrix (8) that has the meaning of the probability of 
finding the number nl  I of identical particles in the state r"), the number nZ2 of identical 
particles in the state T + ( ~ ' ,  etc. Now we define the general normalised density matrix in 
the form 

The properties of the density matrix in the double occupation number space can be 

(i) Hermiticity condition 
written as follows, 

h); 1) = f(n,[; t ) .  (11) 

f ( n , , , i = l ,  . . . ,  c o ; n , = O f o r i # j ; t ) a O  (120) 

f" t)f(N:, ; r) 3 Ifb,; t)l2 (126) 

(ii) Positive definiteness: positiveness of the diagonal matrix elements 

and the Cauchy inequality 

where the arguments NI, and N:, of the diagonal matrix elements in the LHS of 
inequality (12b)  are equal to the total numbers of particles in the primary i and 
secondary j states, respectively: 

m m 
N!. = 2 nip ivii = C nij I1 

j =  I i = l  

We remark here that in the cases of ordinary Fermi-Dirac and Bose-Einstein statistics 
there is the degeneration 

f(n,; t )  = WJ ; t ) X ( N  ; t ) .  (14) 

In these cases the numbers n,, are formed by the following procedure. The intervals of 
length N1, N,, etc, are put one by one on the upper edge of the number axis, and the 
intervals of lengths N:, N;, etc, are put analogously on the lower edge of the same axis. 
Then the intervals between any two neighbouring bounds (upper and lower together) 
give the double occupation numbers rill, nlz ,  etc. Obviously, arbitrary transpositions of 
the sequences of upper intervals as well as lower intervals are allowed. By transposition 
of this kind we get new double occupation numbers m l l s  m12, etc, and the new density 
matrix must be equal to the old one: 

fh,; t )  = f(w,; f). (15) 
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In this case the condition ( 1 2 b )  turns into the equality. Conversely, the existence of 
such a kind of degeneration ( 1 5 )  implies the representation of the density matrix in the 
form ( 1 4 )  and therefore the availability of the usual Fermi-Dirac or Bose-Einstein 
statistics (of course, in the first case the numbers NI, Ni must be s 1 ) .  In the considered 
general case the degeneration (15) does not hold; hence the knowledge of the numbers 
M,, NI from ( 1 3 )  cannot unambiguously restore the density matrix in  the double 
occupation number space. 

We can now write down the Schrodinger equation in terms of the double occupation 
numbers. For definiteness we consider a system of particles with the pairing interaction 
G(x, y )  in the external potential V ( X ) .  For this system the Schrodinger equation is 

iti af(n,; ?) /a t  
00 

= ? E ( k )  ,E (nkp--npk)f (nl / ;  t )  
k - 1  p = l  

In the RHS of equation (16) only the varying arguments are indicated. 

vectors 
The double occupation number space is the Hilbert space with the scalar product of 

Let us emphasise that the vectors in this space are the density matrices themselves but 
not wave functions. 

In this space one can introduce the basis vectors with fixed double occupation 
numbers 

where a,, is Kronecker’s delta. 
Obviously, there is the orthonormalisation 
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Now the density matrix can be represented by the decomposition 
m 

If(nij; t ) ) =  1 f ( n t ;  t ) ln t ) .  
n:; = 1 

Each coefficient of the decomposition (22) is the value of the density matrix at 'the point 
n.. = a?., 

'I  11 

(n;\f(nij;  t )>=f(n i ' ;  t ) *  ( 2 3 )  

We are now in a position to introduce the operators of the transition of a particle 
from one primary state, say s, into another primary state, say r, without any transitions 
of secondary-particle states. We define these operators by their operating on the basis 
vectors: 

m 

q=1 
N r J n i ) =  [ n Y q ( n ~ q - s r s + 1 ) ] ' / 2 1 n ~ q +  1 ,  nYq-1). (24) 

With this definition the operator Nrr is merely an operator of particle numbers in the 
primary state r :  

Due to (24) and (20) the action of the operator N ,  onto the density matrix via (22) 
gives 

a0 

Nrsf(nij; t ) =  C [ ( n s q - s r s + l ) n r q 1 " ~ f ( n r q - 1 ,  n s q + 1 ;  t ) .  (27) 

We remark that if there is a product of two or several operators, say Nr,Nt,, then they 
operate on the density matrix beginning from the leftmost one of them, i.e. N,, and so 
on, in contrast to the order of their action on the basis vector. 

In an analogous way we can introduce the operators which change the secondary 
states without changing the primary-particle states. We indicate them by a prime: 

q= 1 
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By means of (26) and (29) it is easy to prove that 

NL = Nsr (Ni s )+  = NLr. 

Thus the operators Nr, and N:,  are self-adjoint: 

N+,  = Nrr (N'):= Nir. (33) 
Now the Schrodinger equation (16) can be rewritten in terms of bilinear operators 

(27) and (30): 

ih df(ni j ;  t ) / a t  

Here we have used the symmetric form {A, B}+ = A B  + B A  taking into account 
equation (40) obtained below. 

It is convenient to apply a special differential representation for operators (27), 
(30). We can introduce the generating function 

w m  

n,,=1 i , j = l  
P(zij; t ) =  C n z 2 f ( n i j ;  t )  (35) 

where zij are real auxiliary variables: 0 d zij S 1. Conversely, the density matrix is 
expressed by 

The Hermiticity condition and the positive definiteness can be rewritten as 

@ ( Z i j )  = P(Zji) (37) 

9(tii, i = 1, . . . ,CO; zij = 1 for i # j ;  t )  3 0 .  (38) 

The Schrodinger equation for the generating function has the same form (34) provided 
the operators (27) and (30) are given by the differentiation 

Now, directly from the definitions (27) and (30), or more easily with the help of the 
representation (39), one can derive the commutators of N,, N i j :  

[Nij, NrsI = 8jrNis - SisNrj (40a) 

[ N i,, N is 3 = Sj,N !s - 6;,N;, ( 4 0 ~  

[N,, N: , ]  = 0. (41) 

In the algebra (40) and (41) we immediately recognise the Lie algebra of the direct 
product of two unitary groups SU(p) X SU(p)' when the dimension p is equal to the 
number of independent single-particle states and goes to infinity. 
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3. The algebra of particle creation and annihilation operators 

Hitherto we have considered only the systems with fixed numbers of (non-relativistic) 
identical particles. If we now wish to release this constraint, then we must introduce 
operators which vary the number of particles in the system. To this end we try 'to split' 
the operator N j  into the product of creation b: and annihilation bj operators. We 
suppose that Nij has the bilinear form of commutator or anticommutator: 

Nij = i[b:, b,], +constant E = *  (42) 

where [A, B], = A B  +€BA (merely [AB] indicates the commutator AB - B A ) .  At 
present we have no profound grounds for this hypothesis (42). However, later we shall 
present some reasonable arguments in favour of this suggestion. Now we substitute the 
expressions (42) into equation (40a). We get 

Here we used the identity 

[ [A,  BI,, [C? W,I = [A,  [B, [C, ~ l , l l €  + E[& [A, [C, mJl€. (44) 

The comparison of the corresponding, e.g. underlined, terms in the LHS and RHS of 
equa'tion (43) leads to the natural conjecture 

Obviously, equation (45), together with its Hermitian conjugate equation, is the 
solution of equation (43). 

In addition to equation (45) we ought to postulate the additional relations 

(In reality this relation is fulfilled automatically in th& Fock representation with positive 
definite norms of state vectors and with vacuum or vacuum-like states.) 

The relations (45) and (46) determine the algebra of operators bi, b; completely. 
The other relations can be obtained from those either by means of the Hermitian 
conjugation or by applying the generalised Jacobi identity 

All relations can be represented in the unified form 

[ b ( r ) ,  [ b ( s ) ,  b(f)I.l= 2w(rs)b(t) + 2Ew(rt)b(s) (48) 

in which any quantity b ( x )  means 6, or b: denoted by 6" = b: ; the symbols o ( x y )  in the 
RHS of equation (48) have the following values: 

oxy = o x y  = 0 o x y =  - E O  = axy. (49) 

In the relations (48) we recognise the so-called 'Green paracommutation relations' 
postulated by Green (1953) in his generalisation of the field quantisation. The cases 
E = + and E = - correspond to para-Bose- and para-Fermi-quantisation, respectively. 

Kamefuchi and Takahashi (1962) demonstrated that those relations are intimately 
connected with the Lie algebras of symplectic Sp(2p) and orthogonal SO(2p) groups in 
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the even-dimensional spaces. Ii?deed, if, in addition to ATll from (42 ) ,  we aiso introduce 
the operators 

M I  = f[b, ,  b,], L,, -&b:, bTIc = M ;  (50)  

then it is easy to prove by equation (48) and the identity (44) at = E that the operators 
Nzl, M,, L ,  satisfy the Lie algebras of Sp(2p) (for E = +) and SO(2p)  (for E = - - )  groups. 
Ryan and Sudarshan (1963) indicated that if one considers the group S 8 ( 2 p +  l), then 
the operators b,, b: themselves can be included in the Lie algebra of this group (of 
course, for E = -). 

Thus we gained some mathematical reasons for our hypothesis (42) on the 
representation of the operator NI, in the form of commutator or anticommutator only. 
It led us to simple Lie algebras. However, it IS very promising to see that there is some 
physical foundation for this hypothesis also as an extension of Pauli’s theorem on the 
spin-statistics connection to the parastatistics case (Dell’Antonio et ul 1964). 

Now the question arises: is it possible to coirelate each simple Lie algebra to any 
scheme of the generalised quantisation? The answer is positive. 

Obviously, the exceptional simple Lie algebras are not suitable for our aim to 
quantise the fields, the systems with the infinite number of degrees of freedom, because 
these algebras have finite and fixed dimensions (see, for example, Jacobson 1961). Thus 
there is just one more simple Lie algebra suitable for field quantisation: the Lie algebra 
of the unitary group SU(2p) (or SU(2p-i I)). The corresponding quantisation has 
recently been developed by the author (Govorkov 1978) and Palev (1978, 1979). We 
shall call this scheme of quantisation ‘the uniquantisation’. It can be constructed in such 
a manner that either para-Bose- or para-Fermi-quantisation will be its subalgebra. 

For uniquantisation, in addition to the operators obeying (48), one introduces 
another set of particle creation and annihilation operators c,, c‘= c: obeying the same 
commutation relations 

[ c ( a ) ,  [ c (s), c ( t)].] = 2w (rs)c ( 1 )  -I- 2 EW (rt)c (SI. (51) 

The folilowing mutual commutation relations between b and c operators should be 
supposed: 

[ b ( r ) ,  [ b (s ) ,  c ( t ) ] < ]  = 4w(s t ) c ( r )  + 2o(r s )c (  t )  - ~ E O ( ~ P ) C ( S )  

[ c ( r ) ,  [c(s), b( t ) Ic]  = 4w ( s t )b ( r )  i 2o(r s )b (  t )  - ~ E W  ( r t )b ( s )  

( 5 2 u )  

(52b)  

( 5 2 c )  

( 5 2 4  

We emphasise that because of ( 5 2 4  the operators hT,, from (42 )  and M,,, L,, from (50) in 
our ansatz can be expressed in terms of the c:, c, operators on equal footing with the b:, 
b, operators. 

Now we can introduce the complete set of operators NI,, M,,, L ,  from (42 )  and (50) 
and 

(53a)  
(536)  

(53c)  

fi,, =$[b:. c,], 13 -$[C:, b,]€ = -fli 
1 M,, =L $[b,, C,]~ = - $cl,  b,], = - 

L , , = ~ [ b , , c ,  ] E = - - ~ [ ~ : , b : 3 , = - ~ ~ , : I I =  -Sf;. - l i t  
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The commutators of those operators are 

[Nij, ~ r s I  = - [ f i i p  f i r s 1  = SjrNis - SisNrj 

[Mij, NrsI = SjrMis + ESirMjs 

[L;,, N,] = - SjsLir - ESisLjr 

[Ljj, Mrs] = - E S ~ ~ N ~ ,  - S,,N;, - 6irN,, - ES~,N,, 

[Lij, LrsI  = [Mi,, Mrs] = 0 
[Mjj, ICrs] = - 6jrM;, + e6irMjs 

[i,, f i r s ]  = - SjsLjr + E6isLjr 

[Nij ,  f i r s ]  = Sjr f i j s  - SjsRrj 

[i,, Nrs] = - S j j s i j r  + E S j s i j r  

[L,, f i r s ]  = SjsZ;, + E S i s i j r  

[Lij ,  f i r s ]  = - Eajr& + Sjs f i j r  - 

[L, ,  firs] = ES,,N;~ - SjSNir - S;,NjS + 

[fi;,, N,]  = Sj&?js - ~ S ; ~ f i , ,  

+ E S i s r j l r  

[Mi,, f i r s ]  = Sjrfijs  + eSjrfijS 

[L;,, Mrs] = - ~ S j , f i ; ~  - Sjsfijr + + E S ; ~ & . ~  

[hij, f i r s ]  = [ijj, i,] = [Mi,, = [L,, i,] = 0. 

The relations (54a-e) form the Lie algebras of either symplectic Sp(2p) (for E = +) or 
orthogonal SO(2p) (for E = - )  groups. The relations (54f-q) fill up these algebras to 
the Lie algebra of the unitary SU(2p) group ( p  -j CO). The extension of this group to 
SU(2p + 1) (of course for E = - only) gives a possibility of including the operators b, 6:, 
c, c: themselves into the Lie algebra of the group (Govorkov 1978). 

4. Conclusion 

The above consideration showed that the principle of indistinguishability of identical 
particles brings us to the paraquantisation schemes rather than to the ordinary Bose- or 
Fermi-quantisation. The naturalness of the schemes of para-Bose-, para-Fermi- and 
uniquantisation lies in the existence of three simple Lie algebras in even-dimensional 
spaces: Lie algebras of symplectic, orthogonal and unitary groups, respectively. Thus, 
the Lie algebraic approach to the field quantisation developed by Kamefuchi and 
Takahashi (1962), Ryan and Sudarshan (1963), Geyer (1968), Bracken and Green 
(1973) and Palev (1974) is not accidental but comes from the indistinguishability of 
identical particles. 

On the other hand, it is well known that the parafield can be presented in the 
framework of the so-called ‘Green ansatz’ (Green 1953, Greenberg and Messiah 1965) 
as sums of a certain number of ordinary fermion or boson fields with anomalous 
(opposite) mutual commutation relations. The latter does not really matter inasmuch as 
the anomalous mutual commutation relations can be changed into the normal ones by 
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means of the convenient Klein transformation (Govorkov 1966, Druhl et a1 1970). 
Thus, the parafield can be reduced to the conglomerate of usual canonical fields 
degenerated in some hidden degree of freedom. (For some peculiarities of this 
representation for the uniquantisation see Govorkov (1978).) Hence, the introduction 
of hidden degrees of freedom in such a manner is the only generalisation of usual 
statistics when the field quantisation is restricted to the simple Lie algebraic schemes. 
Moreover, the canonical Bose-Einstein and Fermi-Dirac statistics can be considered as 
special but fundamental representations of Green’s paracommutation relations. The 
possibility of introducing physical internal symmetries of the type of isospin, SU(3) or 
higher hadronic symmetries as well as some leptonic ones through the para- or 
uniquantisation has only started to be investigated (Govorkov 1968, 1969,1973, 1978, 
Green 1972, Bracken and Green 1973, Ohnuki and Kamefuchi 1973a, b). 

Our consideration showed only the sufficiency of the above-mentioned schemes of 
generalised quantisation but not their necessity. It is still an open question: could any 
more complicated schemes founded on non-simple Lie algebras exist? The main result 
of this paper asserts that all of them must include the Lie algebra of the SU(p-, 00) 

group as their subalgebra. 
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